Postingan lainnya
Perhitungan Quartile RFM ANALYSIS
import numpy as np, pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import datetime as dt
from random import sample
from numpy.random import uniform
from math import isnan
import sklearn
from sklearn.preprocessing import StandardScaler
data2= pd.read_excel('F:/File datamining/Data zakat.xlsx')
#Menampilkan data
data2
transaksi = data2.groupby(['No.', 'Tanggal']).sum().reset_index()
transaksi.head()
import datetime as dt
NOW = dt.datetime(2022,4,12)
data2['Tgl'] = pd.to_datetime(data2['Tanggal'])
rfmTable = data2.groupby('NPWZ').agg({'Tanggal': lambda x: (NOW - x.max()).days, 'No.': lambda x: len(x), 'Nominal': lambda x: x.sum()})
rfmTable['Tanggal'] = rfmTable['Tanggal'].astype(int)
rfmTable.rename(columns={'Tanggal': 'recency',
             'No.': 'frequency',
             'Nominal': 'monetary_value'}, inplace=True)
rfmTable
quantiles = rfmTable.quantile(q=[0.25, 0.5, 0.75])
quantiles
(bisa bantu saya? maksud dari variabel x,p,dan d pada perhitungan quartile dibawah ini apa ya?)
def RScore(x,p,d):
  if x <= d[p][0.25]:
    return 1
  elif x <= d[p][0.50]:
    return 2
  elif x <= d[p][0.75]:
    return 3
  else:
    return 4
def FMScore(x,p,d):
  if x <= d[p][0.25]:
    return 4
  elif x <= d[p][0.50]:
    return 3
  elif x <= d[p][0.75]:
    return 2
  else:
    return 1
segmented_rfm['R'] = segmented_rfm['recency'].apply(RScore, args=('recency',quantiles,))
segmented_rfm['F'] = segmented_rfm['frequency'].apply(FMScore, args=('frequency',quantiles,))
segmented_rfm['M'] = segmented_rfm['monetary_value'].apply(FMScore, args=('monetary_value',quantiles,))
segmented_rfm
segmented_rfm['RFM_score'] = segmented_rfm[['R', 'F', 'M']].sum(axis=1)
segmented_rfm
Belum ada Jawaban. Jadi yang pertama Jawaban
Login untuk ikut Jawaban