Postingan lainnya
Buku Ini Koding!
Baru!
Buku ini akan jadi teman perjalanan kamu belajar sampai dapat kerjaan di dunia programming!
saya mengalami kesulitan untuk memahami fungsi dari training wajah dibawah ini
@login_required
def train(request):
if request.user.username!='admin':
return redirect('not-authorised')
training_dir='face_recognition_data/training_dataset'
count=0
for person_name in os.listdir(training_dir):
curr_directory=os.path.join(training_dir,person_name)
if not os.path.isdir(curr_directory):
continue
for imagefile in image_files_in_folder(curr_directory):
count+=1
X=[]
y=[]
i=0
for person_name in os.listdir(training_dir):
print(str(person_name))
curr_directory=os.path.join(training_dir,person_name)
if not os.path.isdir(curr_directory):
continue
for imagefile in image_files_in_folder(curr_directory):
print(str(imagefile))
image=cv2.imread(imagefile)
try:
X.append((face_recognition.face_encodings(image)[0]).tolist())
y.append(person_name)
i+=1
except:
print("removed")
os.remove(imagefile)
targets=np.array(y)
encoder = LabelEncoder()
encoder.fit(y)
y=encoder.transform(y)
X1=np.array(X)
print("shape: "+ str(X1.shape))
np.save('face_recognition_data/classes.npy', encoder.classes_)
svc = SVC(kernel='linear',probability=True)
svc.fit(X1,y)
svc_save_path="face_recognition_data/svc.sav"
with open(svc_save_path, 'wb') as f:
pickle.dump(svc,f)
vizualize_Data(X1,targets)
messages.success(request, f'Training Complete.')
return render(request,"recognition/train.html")
0
Belum ada Jawaban. Jadi yang pertama Jawaban
Login untuk ikut Jawaban